No significant endothelial apoptosis in the radiation-induced gastrointestinal syndrome.
نویسندگان
چکیده
PURPOSE This report addresses the incidence of vascular endothelial cell apoptosis in the mouse small intestine in relation to the radiation-induced gastrointestinal (GI) syndrome. METHODS AND MATERIALS Nonanesthetized mice received whole-body irradiation at doses above and below the threshold for death from the GI syndrome with 250 kVp X-rays, (137)Cs gamma rays, epithermal neutrons alone, or a unique approach for selective vascular irradiation using epithermal neutrons in combination with boronated liposomes that are restricted to the blood. Both terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining for apoptosis and dual-fluorescence staining for apoptosis and endothelial cells were carried out in jejunal cross-sections at 4 h postirradiation. RESULTS Most apoptotic cells were in the crypt epithelium. The number of TUNEL-positive nuclei per villus was low (1.62 +/- 0.03, mean +/- SEM) for all irradiation modalities and showed no dose-response as a function of blood vessel dose, even as the dose crossed the threshold for death from the GI syndrome. Dual-fluorescence staining for apoptosis and endothelial cells verified the TUNEL results and identified the apoptotic nuclei in the villi as CD45-positive leukocytes. CONCLUSION These data do not support the hypothesis that vascular endothelial cell apoptosis is the cause of the GI syndrome.
منابع مشابه
PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome.
Radiation is one of the most effective cancer treatments. However, gastrointestinal (GI) syndrome is a major limiting factor in abdominal and pelvic radiotherapy. The loss of crypt stem cells or villus endothelial cells has been suggested to be responsible for radiation-induced intestinal damage. We report here a critical role of the BH3-only protein p53 upregulated modulator of apoptosis (PUMA...
متن کاملp53 controls radiation-induced gastrointestinal syndrome in mice independent of apoptosis.
Acute exposure to ionizing radiation can cause lethal damage to the gastrointestinal (GI) tract, a condition called the GI syndrome. Whether the target cells affected by radiation to cause the GI syndrome are derived from the epithelium or endothelium and whether the target cells die by apoptosis or other mechanisms are controversial issues. Studying mouse models, we found that selective deleti...
متن کاملAnti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice.
Radiation gastrointestinal (GI) syndrome is a major lethal toxicity that may occur after a radiation/nuclear incident. Currently, there are no prophylactic countermeasures against radiation GI syndrome lethality for first responders, military personnel, or remediation workers entering a contaminated area. The pathophysiology of this syndrome requires depletion of stem cell clonogens (SCCs) with...
متن کاملSphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis.
A previous in vitro study showed that sphingosine-1-phosphate (S1P), a ceramide antagonist, preserved endothelial cells in culture from radiation-induced apoptosis. We proposed to validate the role of S1P in tissue radioprotection by inhibiting acute gastrointestinal (GI) syndrome induced by endothelial cell apoptosis after high dose of radiation. Retro-orbital S1P was injected in mice exposed ...
متن کاملProtective effect of L-carnitine and vitamin E on gastrointestinal tract organs on male rats post radiation exposure
Background: Although ionizing radiation is a risk factor, it is a therapeutic agent for cancer. Objectives: The protective and defensive effect of L-Carnitine and vitamin E on gastrointestinal tract organs (liver, spleen and intestine) post whole body gamma irradiation exposure. Material and methods: 56 male albino rats, which were divided into four groups (14 rats per group); group (I): Contro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of radiation oncology, biology, physics
دوره 68 1 شماره
صفحات -
تاریخ انتشار 2007